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Introduction 

This implementation of GPU-Surf is open-source (license MIT) and should be cross-
platform (currently tested on Windows only). It is based on Ogre3D to get DirectX/OpenGL 
abstraction. This implementation is using pixel shaders and Cuda for GPU computing. This is 
a partial implementation of Surf algorithm (feature detector implemented but feature 
descriptor missing). 

 

Definition of SURF from Wikipedia: 

 

SURF (Speeded Up Robust Features) is a robust image detector & descriptor, first 
presented by Herbert Bay et al. in 2006, that can be used in computer vision tasks like object 
recognition or 3D reconstruction. It is partly inspired by the SIFT descriptor. The standard 
version of SURF is several times faster than SIFT and claimed by its authors to be more 
robust against different image transformations than SIFT. SURF is based on sums of 
approximated 2D Haar wavelet responses and makes an efficient use of integral images. As 
basic image features it uses a Haar wavelet approximation of the determinant of 
Hessian blob detector. 

  
Original image Corner detection 

 

Existing implementations: 

 

Num Name Open-Source GPU Windows Linux Language 

0 Surf No No Yes Yes C++ 

1 OpenSurf Yes (GPL v3) Partially Yes Yes C++ 

2 GPU-Surf No Yes No Yes GLSL, Cuda 

3 GPU-Surf Yes (BSD) Yes Yes Yes C++, Cuda 

 

• [0] : Surf : http://www.vision.ee.ethz.ch/~surf 

• [1] : OpenSurf : http://code.google.com/p/opensurf1/  

• [1] : OpenSurf Partial GPU : http://cs264.org/projects/web/Cowgill_Michael/cowgill/Index.html 

• [2] : GPU-Surf : http://homes.esat.kuleuven.be/~ncorneli/gpusurf/ 

• [3] : GPU-Surf : http://asrl.utias.utoronto.ca/code/gpusurf/ 

 



Papers: 

 

a) H. Bay, A. Ess, T. Tuytelaars, L. Van Goo, SURF : Speeded-Up Robust Features 

o ftp://ftp.vision.ee.ethz.ch/publications/articles/eth_biwi_00517.pdf 

o Correspond to Surf [0] 

b) N. Cornelis, L. Van Gool:Fast Scale Invariant Feature Detection and Matching on Programmable 

Graphics Hardware 

o http://homes.esat.kuleuven.be/~ncorneli/gpusurf/ncorneli_cvpr2008.pdf 

o Correspond to GPU-Surf [2] 

c) Paul Furgale, Chi Hay Tong and Gaetan Kenway, Speeded-Up Speeded-Up Robust Features 

o http://asrl.utias.utoronto.ca/~ptf/docs/gpusurf_report09.pdf 

o Correspond to GPU-Surf [3] 

 

This implementation is based on the paper of Nico Cornelis [b] and the Non-
Maximum-Suppression stage was done thanks to a very in deep analysis of his closed-
source GPU implementation. 

  



Feature detector 

 

Presentation 

 

In order to detect features position you have to do some computation on multiple scales, this 

is usally done using a single image and applying 2D box filter of increasing size. To speed-up box filter 

normalization, an integral image is computed and used to compute sum of pixels of a specific area.  

All CPU versions are based on this idea but this is not the case of the GPU version of Nico 

Cornelis. Indeed the main idea of this paper was to reduce image dimension and to apply a box filter 

of constant size. All down-sampled version of the original imager are stored in a gaussian pyramid. 

The brillant idea of Nico Cornlelis was to use texture mipmap to store this Gaussian pyramid. 

Gaussian pyramid : Mipmap texture on GPU : 

  

  
As you can see a 2D texture with mipmap can be used to store a Gaussian pyramid with 4 

scales (RGBA), each octave corresponding to a mipmap level. 

Surf feature detector can be decomposed in multiple stages: 

 

1. RGB→Gray + down-sampling 

2. Gaussian Filtering (2-pass) 

3. Determinant Hessian 

4. Non-Maximum-Suppression 

5. Feature extraction (Cuda) 

6. Feature interpolation 

 

Scale 0         Scale 1         Scale 2       Scale 3

Octave 0
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RGB → Gray + down-sampling 

 

RGB → Gray: 

void GPGPU_rgb2gray_fp( 
 float4 uv              : TEXCOORD0, 
 uniform sampler2D tex0 : register(s0), 
 out float4 result : COLOR 
) 
{ 
float luminance = dot(tex2D(tex0, uv), float4(0.299 , 0.587, 0.114, 0)); 
result = float4(luminance, luminance, luminance, 1. 0); 
} 

 

Downsampling : 

void GPGPU_downsampling_fp( 
 float4 uv  : TEXCOORD0, 
 uniform sampler2D tex0 : register(s0), 
 uniform float octave, 
 out float4 result      : COLOR 
) 
{ 
 float4 coord = float4(uv.x, uv.y, 0, octave-1.0); 
 float luminance = tex2Dlod(tex0, coord).a; 
 result = float4(luminance, luminance, luminance, 1 .0); 
} 

 

The down-sampling of an octave O is computed by reading values from the octave O-1. As explained 

in the paper the values are read from the alpha channel of the previous octave to reduce aliasing.  

 

Gaussian Filtering (2-pass) 

 

The separable 19x19 Gaussian filters are implemented as a two-pass operation (Gaussian-x and 

Gaussian-y). Usually, scales of an octave are computed from each other (serial computation n =  f(n-

1)). But we can compute the four scales in one step by using a Gaussian kernel with increasing radius. 

K = 2^(1/nbScale) //nbScale = 4 (RGBA) 
 
Original image: level = sigma 
----------------------------- 
Octave 0, scale 0: level = (K)*sigma 
Octave 0, scale 1: level = (K^2)*sigma  
Octave 0, scale 2: level = (K^3)*sigma 
Octave 0, scale 3: level = (K^4)*sigma = 2.0*sigma 
----------------------------- 
Octave 1, niveau 0 : échelle = 2.0*(K)*sigma 



Octave 1, niveau 1 : échelle = 2.0*(K^2)*sigma 
Octave 1, niveau 2 : échelle = 2.0*(K^3)*sigma 
Octave 1, niveau 3 : échelle = 2.0*(K^4)*sigma = 4. 0*sigma 
----------------------------- 
… 

 

Gaussian kernel used: 

Scale 0 Scale 1 Scale 2 Scale 3 

0 0 0 3.1577E-07 

0 0 0 5.3688E-06 

0 0 4.4724E-07 6.5405E-05 

0 0 1.5648E-05 0.00057093 

0 1.4867E-06 0.00031683 0.00357099 

0 0.00013383 0.00371264 0.01600408 

1.1855E-05 0.00443185 0.02517766 0.05139345 

0.00495558 0.05399097 0.09881531 0.11825507 

0.18527372 0.24197073 0.22444478 0.19496965 

0.61951762 0.39894229 0.29503345 0.23032942 

0.18527372 0.24197073 0.22444478 0.19496965 

0.00495558 0.05399097 0.09881531 0.11825507 

1.1855E-05 0.00443185 0.02517766 0.05139345 

0 0.00013383 0.00371264 0.01600408 

0 1.4867E-06 0.00031683 0.00357099 

0 0 1.5648E-05 0.00057093 

0 0 4.4724E-07 6.5405E-05 

0 0 0 5.3688E-06 

0 0 0 3.1577E-07 

 

Determinant Hessian 

 
 

 The determinant of Hessian is computed using: 
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Non-Maximum-Suppression 

 

In this stage we’ve got Hessian values for each pixel in each octaves and scales. But only the 

maximum values are relevant, so we need to compute NMS (Non-Maximum-Suppression) to remove 

all small values: features are located in the maximum of Hessian values. 

We need to perform a 3x3x3 NMS filtering in order to isolate the feature.  It consists in keeping a 

value if it’s the maximum value in a 26 neighboring. 

 
 

 

3x3x3 Non Maximum Suppression 

(26 neighboring) 

There is only one possible maximum in 2x2 

image-space (red zone). 

 

To reduce memory occupancy, you can store the result of the non maximum suppression in a texture 

mipmap of half dimensions in x and y. Because it’s not possible to have two maximum in 2x2 image 

space. 

 

As a result, a 4x4x3 (width, height, space) image 

zone can give 1 possible value. But you need to 

add extra information to localize the maximum 

in the original red zone (boolean x and y offset). 

 

 

 

 

 



Easy case: first octave only 

Maximum extraction in image-space 

There is only one possible maximum possible in 2x2 image space. But each pixel in this 2x2 image-

space zone need extra border pixel to compute 3x3 comparisons. So you need to use 4x4 image-

space zones to compute a 3x3 comparison for pixels in centered 2x2 zones. 

  

 
4x4 image-space with 2x2 

centered zone (T0,T1,T2,T3) 

Extra maximum comparison T8 

and T9 

3x3 comparison for each pixel 

in 2x2 image-space 

 

Example: 

How to extract maximum for T0 ? 

    
R0 = max(R0,T3) R0 = max(R0,T9) R0 = max(R0,T5) R0 = max(R0,T4) 

 

The maximum comparison are performs on vectors rather than scalars, which leads to significant 

performance enhancement. So we get maximum values in image-space for each scale 

simultaneously.  

 

R0 is now a vector4(x,y,z,w) or (r,g,b,a) 

R0.x = max(red zone) 

R0.y = max(green zone) 

R0.z = max(blue zone) 

R0.w = max(grey zone) 

scale 3

scale 2

scale 1

scale 0



Maximum extraction in scale-space 

R0 is the vector4 (x,y,z,w) you get from previous stage. 

a) R0.xyz = max(R0.xyz, R0.yzw) 

b) R0.yzw = max(R0.xyz, R0.yzw) 
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R0.y = max(blue  zone) 

R0.z = max(green zone) 

 

 

R0 is a vector4 (x,y,z,w) and T0 is a vector4 (i,j,k,l) 

a) R0.xyz = max(R0.xyz, T0.yzw) 

b) R0.yzw = max(T0.xyz, R0.yzw) 
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R0.y = max(blue zone) 

R0.z = max(green zone) 

 

 

  



Maximum thresholding 

You need to threshold maximum value in order to keep only relevant ones. 

R0 is the vector4 (x,y,z,w) you get from previous stage. 

a) R0 = max(R0,threshold) 

b) T4 = T0 >=R0 

Explanation a): 

• R0.x = irrelevant value 

• R0.y = max(max(green zone), threshold) 

• R0.z = max(max(blue zone), threshold) 

• R0.w = irrelevant value 

Explanation b): 

• T4.x = irrelevant value 

• T4.y = is T0.y a 3x3x3 maximum > threshold ? 

• T4.z = is T0.z a 3x3x3 maximum > threshold ? 

• T4.w = irrelevant value 

Maximum encoding 

 

 

 T4 = is T0 maximum ? 

T5 = is T1 maximum ? 

T6 = is T2 maximum ? 

T7 = is T3 maximum ? 

 x-offset = T5+T7 

y-offset = T6+T7 

extremum = T4+T5+T6+T7 

 

 

 

 

x-offset y-offset extremum
1    0

0    0

0    1

0    0

0     0      1

1     0      1
0    0

0    1 1     1      1
0    0

1    0 0     1      1
0    0

0    0 0     0      0



Hard-case: remaining octaves: 

How to get 4 detectable scales? 

Those examples where taken for the trivial case (green and blue channel ↔ scale 1 & 2). But for the 

other scales it’s a bit harder because there are lacking one border scale for performing maximum 

extraction in scale-space. 

You can sub-sample last two scales of previous octave to get again 4 detectable scales. 

 

Schematic representation of Gaussian 

pyramid with 5 octaves and 4 scales 
Octave N + 2 scales sub-sampled from Octave N-1 

 

 

Scale 3 = alpha channel needs 2 sub-sampled channels 

Scale 0 = red channel needs 1 sub-sampled channel 

You get 4 detectable scales per octave 

(except for the first octave) 

 

R0  G0    B0   A0

R1  G1    B1   A1

R2  G2    B2   A2

R3  G3    B3   A3

R4  G4    B4   A4

scales

octaves

W = scale 3

Z = scale 2

Y = scale 1

X = scale 0

Y = scale 3

X = scale2

Octave n

Octave n-1
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B1   A1
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B0   A0

B1   A1

B2   A2

R0  G0    B0   A0

R1  G1    B1   A1

R2  G2    B2   A2

R3  G3    B3   A3

B0   A0

B1   A1

B2   A2
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R1  G1    B1   A1

R2  G2    B2   A2

R3  G3    B3   A3
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B3   A3 R4  G4    B4   A4 B3   A3 R4  G4    B4   A4

B3   A3 R4  G4    B4   A4 B3   A3 R4  G4    B4   A4
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B2   A2

B3   A3



Maximum extraction in scale-space for the remaining octaves 

 

As you can see to be able to perform 3x3x3 non maximum suppression on 4 scales you need 6 scales. 

This is done by sub-sampling the 2 last scales of the previous octaves. 

 

Maximum extraction in image-space 

The spatial maximum extraction is not very different from the one explained for the first octave. You 

just have to do the comparisons on both octaves.  

Octave N (R,T) ↔ Octave N-1 (K,L) 

So you also have L8 and L9 equivalent of T8 and T9. 

 

 

W

Z

Y

X

J

I



Maximum extraction in scale-space 

K0 is a vector2 (i,j) and R0 s a vector4(x,y,z,w) 

a) T4 = max(float4(K0.y, R0.xyz), R0) 

b) T4 = max(float4(K0.xy, R0.xy), T4) 
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T4.x = max(red zone) 

T4.y = max(green zone) 

T4.z = max(blue zone) 

T4.w = max(gray zone) 

 

 

 

 

L0 is a vector2 (i,j), T0 is a vector4(x,y,z,w) and T4 is a vector4(l,m,o,p) 

a) T4 = max(T4, T0) b
 T4 = max(T4, float4(L0.xy,T0.xy) 
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T4.x = max(red zone) 

T4.y = max(green zone) 

T4.z = max(blue zone) 

T4.w = max(gray zone)  
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Maximum Thresholding 

Thresholding for the remaining octaves…. 

T4 is the vector4 you get from the previous stage 

a) T4 = max(T4, threshold) 

b) T4 = float4(L0.y, T0.xyz) >= T4 

 

Explanation a): 

• T4.x = max(red zone, threshold) 

• T4.y = max(green zone, threshold) 

• T4.z = max(blue zone, threshold) 

• T4.w = max(gray zone, threshold) 

 

Explanation b): 

• T4.x = is L0.y a 3x3x3 maximum > threshold ? 

• T4.y = is T0.x a 3x3x3 maximum > threshold ? 

• T4.z = is T0.y a 3x3x3 maximum > threshold ? 

• T4.w = is T0.z a 3x3x3 maximum > threshold ? 

 

Maximum encoding 

 

No difference with the version for the first octave. 

 

Feature extraction (Cuda) 

This is a pretty straight-forward implementation from the information given in the paper of Nico 

Cornelis. 

 

 

 

 

 

 

 

 

 



Feature interpolation 

 

  
3x3 Hessian values (maximum center value) Parabolic fitting maximum value 

 

Fitting of parabol 

We are looking for an X vector as �. 7 =  −� 

G = first-order derivative 

H = second order derivative 
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�. 7 =  −� ↔ A�77 �7B �7C�7B �BB �BC�7C �BC �CCD . E�	�F = − A�7�B�CD 

7 =  −�GH. � ↔ E�	�F = − A�77 �7B �7C�7B �BB �BC�7C �BC �CCDGH . A�7�B�CD 

Maximum is situated in S4.y 

 

 
 

S0 S1 S2

S3 S4 S5

S6 S7 S8
X

Y
Z



First-order derivative: 
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Second-order derivative: 
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Feature descriptor 

This is not implemented in the current version. 

 

Feature matching 

This is not implemented in the current version. 

This could be done using Cublas from Nvidia. 

 

Conclusion 

The author of this implementation has started this project to learn GPGPU computing.  He has 

created some libraries to ease GPGPU development with Ogre3D: 

• Ogre::Cuda: Cuda 3.0 integration with Ogre3D: allow to register/map DirectX or OpenGL texture 

with Cuda graphic interop. 

• Ogre::OpenCL: OpenCl integration with Ogre3D: designed with the same goal as Ogre::Cuda but 

for OpenCL (in the future this version of GPUSurf could be using OpenCL instead of Cuda). 

• Ogre::GPGPU: GPGPU helper for Ogre3D: add an abstraction over texture/pixel shader rename in 

result/operation. 

• Ogre::Canvas: 2D API for Ogre3D using Skia: this is useful for visual debugging and is 

implemented using the same API as Html5 Canvas tag and also have the same Javascript 

bindings.  


